
Figure 9.21 The Thomson and Rutherford models of the atom. The Thomson model predicted that nearly all of the incident
alpha-particles would be scattered and at small angles. Rutherford and Geiger found that nearly none of the alpha particles were
scattered, but those few that were deflected did so through very large angles. The results of Rutherford’s experiments were
inconsistent with the Thomson model. Rutherford used conservation of momentum and energy to develop a new, and better
model of the atom—the nuclear model.

9.5 | Collisions in Multiple Dimensions

Learning Objectives

By the end of this section, you will be able to:

• Express momentum as a two-dimensional vector

• Write equations for momentum conservation in component form

• Calculate momentum in two dimensions, as a vector quantity

It is far more common for collisions to occur in two dimensions; that is, the angle between the initial velocity vectors is
neither zero nor 180° . Let’s see what complications arise from this.

The first idea we need is that momentum is a vector; like all vectors, it can be expressed as a sum of perpendicular
components (usually, though not always, an x-component and a y-component, and a z-component if necessary). Thus, when
we write down the statement of conservation of momentum for a problem, our momentum vectors can be, and usually will
be, expressed in component form.

The second idea we need comes from the fact that momentum is related to force:
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F→ = d p→
dt .

Expressing both the force and the momentum in component form,

Fx = dpx
dt , Fy =

dpy
dt , Fz = dpz

dt .

Remember, these equations are simply Newton’s second law, in vector form and in component form. We know that
Newton’s second law is true in each direction, independently of the others. It follows therefore (via Newton’s third law) that
conservation of momentum is also true in each direction independently.

These two ideas motivate the solution to two-dimensional problems: We write down the expression for conservation of
momentum twice: once in the x-direction and once in the y-direction.

(9.18)pf, x = p1,i, x + p2,i, x
pf, y = p1,i, y + p2,i, y

This procedure is shown graphically in Figure 9.22.
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Figure 9.22 (a) For two-dimensional momentum problems,
break the initial momentum vectors into their x- and
y-components. (b) Add the x- and y-components together
separately. This gives you the x- and y-components of the final
momentum, which are shown as red dashed vectors. (c) Adding
these components together gives the final momentum.

We solve each of these two component equations independently to obtain the x- and y-components of the desired velocity
vector:

vf, x =
m1 v1,i, x + m2 v2,i, x

m

vf, y =
m1 v1,i, y + m2 v2,i, y

m .

(Here, m represents the total mass of the system.) Finally, combine these components using the Pythagorean theorem,

vf = | v→ f| = vf, x
2 + vf, y

2 .
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Problem-Solving Strategy: Conservation of Momentum in Two Dimensions

The method for solving a two-dimensional (or even three-dimensional) conservation of momentum problem is
generally the same as the method for solving a one-dimensional problem, except that you have to conserve momentum
in both (or all three) dimensions simultaneously:

1. Identify a closed system.

2. Write down the equation that represents conservation of momentum in the x-direction, and solve it for the
desired quantity. If you are calculating a vector quantity (velocity, usually), this will give you the x-component
of the vector.

3. Write down the equation that represents conservation of momentum in the y-direction, and solve. This will give
you the y-component of your vector quantity.

4. Assuming you are calculating a vector quantity, use the Pythagorean theorem to calculate its magnitude, using
the results of steps 3 and 4.

Example 9.14

Traffic Collision

A small car of mass 1200 kg traveling east at 60 km/hr collides at an intersection with a truck of mass 3000 kg
that is traveling due north at 40 km/hr (Figure 9.23). The two vehicles are locked together. What is the velocity
of the combined wreckage?

Figure 9.23 A large truck moving north is about to collide with a small car
moving east. The final momentum vector has both x- and y-components.

Strategy

First off, we need a closed system. The natural system to choose is the (car + truck), but this system is not closed;
friction from the road acts on both vehicles. We avoid this problem by restricting the question to finding the
velocity at the instant just after the collision, so that friction has not yet had any effect on the system. With that
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restriction, momentum is conserved for this system.

Since there are two directions involved, we do conservation of momentum twice: once in the x-direction and once
in the y-direction.

Solution

Before the collision the total momentum is

p→ = mc v→ c + mT v→ T.

After the collision, the wreckage has momentum

p→ = (mc + mT) v→ w.

Since the system is closed, momentum must be conserved, so we have

mc v→ c + mT v→ T = (mc + mT) v→ w.

We have to be careful; the two initial momenta are not parallel. We must add vectorially (Figure 9.24).

Figure 9.24 Graphical addition of momentum vectors. Notice
that, although the car’s velocity is larger than the truck’s, its
momentum is smaller.

If we define the +x-direction to point east and the +y-direction to point north, as in the figure, then (conveniently),

p→ c = pc i
^

= mc vc i
^

p→ T = pT j
^

= mT vT j
^

.

Therefore, in the x-direction:

mc vc = (mc + mT)vw, x

vw, x = ⎛
⎝

mc
mc + mT

⎞
⎠vc

and in the y-direction:

mT vT = (mc + mT)vw, y

vw, y = ⎛
⎝

mT
mc + mT

⎞
⎠vT.

Applying the Pythagorean theorem gives
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9.9

| v→ w| = ⎡
⎣
⎛
⎝

mc
mc + mt

⎞
⎠vc

⎤
⎦

2
+ ⎡

⎣
⎛
⎝

mt
mc + mt

⎞
⎠vt

⎤
⎦

2

= ⎡
⎣
⎛
⎝
1200 kg
4200 kg

⎞
⎠

⎛
⎝16.67 m

s
⎞
⎠
⎤
⎦

2
+ ⎡

⎣
⎛
⎝
3000 kg
4200 kg

⎞
⎠

⎛
⎝11.1 m

s
⎞
⎠
⎤
⎦

2

= ⎛
⎝4.76 m

s
⎞
⎠
2

+ ⎛
⎝7.93 m

s
⎞
⎠
2

= 9.25 m
s ≈ 33.3 km

hr .

As for its direction, using the angle shown in the figure,

θ = tan−1 ⎛
⎝
vw, x
vw, y

⎞
⎠ = tan−1 ⎛

⎝
7.93 m/s
4.76 m/s

⎞
⎠ = 59°.

This angle is east of north, or 31° counterclockwise from the +x-direction.

Significance

As a practical matter, accident investigators usually work in the “opposite direction”; they measure the distance
of skid marks on the road (which gives the stopping distance) and use the work-energy theorem along with
conservation of momentum to determine the speeds and directions of the cars prior to the collision. We saw that
analysis in an earlier section.

Check Your Understanding Suppose the initial velocities were not at right angles to each other. How
would this change both the physical result and the mathematical analysis of the collision?

Example 9.15

Exploding Scuba Tank

A common scuba tank is an aluminum cylinder that weighs 31.7 pounds empty (Figure 9.25). When full of
compressed air, the internal pressure is between 2500 and 3000 psi (pounds per square inch). Suppose such a
tank, which had been sitting motionless, suddenly explodes into three pieces. The first piece, weighing 10 pounds,
shoots off horizontally at 235 miles per hour; the second piece (7 pounds) shoots off at 172 miles per hour, also in
the horizontal plane, but at a 19° angle to the first piece. What is the mass and initial velocity of the third piece?

(Do all work, and express your final answer, in SI units.)

Figure 9.25 A scuba tank explodes into three pieces.

Strategy

To use conservation of momentum, we need a closed system. If we define the system to be the scuba tank, this is
not a closed system, since gravity is an external force. However, the problem asks for the just the initial velocity
of the third piece, so we can neglect the effect of gravity and consider the tank by itself as a closed system. Notice
that, for this system, the initial momentum vector is zero.

We choose a coordinate system where all the motion happens in the xy-plane. We then write down the equations
for conservation of momentum in each direction, thus obtaining the x- and y-components of the momentum of the
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third piece, from which we obtain its magnitude (via the Pythagorean theorem) and its direction. Finally, dividing
this momentum by the mass of the third piece gives us the velocity.

Solution

First, let’s get all the conversions to SI units out of the way:

31.7 lb × 1 kg
2.2 lb → 14.4 kg

10 lb → 4.5 kg
235 miles

hour × 1 hour
3600 s × 1609 m

mile = 105 m
s

7 lb → 3.2 kg
172 mile

hour = 77 m
s

m3 = 14.4 kg − ⎛
⎝4.5 kg + 3.2 kg⎞

⎠ = 6.7 kg.

Now apply conservation of momentum in each direction.

x-direction:

pf,x = p0,x
p1,x + p2,x + p3,x = 0

m1 v1,x + m2 v2,x + p3,x = 0
p3,x = −m1 v1,x − m2 v2,x

y-direction:

pf,y = p0,y

p1,y + p2,y + p3,y = 0

m1 v1,y + m2 v2,y + p3,y = 0
p3,y = −m1 v1,y − m2 v2,y

From our chosen coordinate system, we write the x-components as
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p3, x = −m1 v1 − m2 v2 cosθ

= −⎛
⎝14.5 kg⎞

⎠
⎛
⎝105 m

s
⎞
⎠ − ⎛

⎝4.5 kg⎞
⎠
⎛
⎝77 m

s
⎞
⎠cos(19°)

= −1850kg · m
s .

For the y-direction, we have

p3y = 0 − m2 v2 sinθ

= −⎛
⎝4.5 kg⎞

⎠
⎛
⎝77 m

s
⎞
⎠sin(19°)

= −113 kg · m
s .

This gives the magnitude of p3 :

p3 = p3,x
2 + p3,y

2

= ⎛
⎝−1850 kg · m

s
⎞
⎠

2
+ ⎛

⎝−113 kg · m
s

⎞
⎠

= 1854 kg · m
s .

The velocity of the third piece is therefore

v3 = p3
m3

= 1854 kg · m
s

6.7 kg = 277 m
s .

The direction of its velocity vector is the same as the direction of its momentum vector:

ϕ = tan−1 ⎛
⎝

p3,y
p3,x

⎞
⎠ = tan−1

⎛

⎝
⎜ 113 kg · m

s

1850 kg · m
s

⎞

⎠
⎟ = 3.5°.

Because ϕ is below the −x -axis, the actual angle is 183.5° from the +x-direction.

Significance

The enormous velocities here are typical; an exploding tank of any compressed gas can easily punch through
the wall of a house and cause significant injury, or death. Fortunately, such explosions are extremely rare, on a
percentage basis.

Check Your Understanding Notice that the mass of the air in the tank was neglected in the analysis and
solution. How would the solution method changed if the air was included? How large a difference do you think
it would make in the final answer?

9.6 | Center of Mass

Learning Objectives

By the end of this section, you will be able to:

• Explain the meaning and usefulness of the concept of center of mass

• Calculate the center of mass of a given system

• Apply the center of mass concept in two and three dimensions

• Calculate the velocity and acceleration of the center of mass

We have been avoiding an important issue up to now: When we say that an object moves (more correctly, accelerates) in a
way that obeys Newton’s second law, we have been ignoring the fact that all objects are actually made of many constituent
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